Singing Counts!

Songs and Activities that Reinforce Common Core Standards for Mathematics

Louisiana Music Educators Association

November 19, 2015

Charlotte P. Mizener
Lamar University
Mary Morgan Moore Department of Music
clmizener@lamar.edu
Some People Talk a Lot

Some people talk a lot but never say a thing,

So it's best by far to let them sing.
Using Music to Reinforce Other Subject Areas

- Enrich experiences in other parts of the curriculum (e.g., social studies lessons)
- Strengthen specific academic skills (e.g., math)
- Maintain integrity of the individual subjects
The Purpose of This Session

• To address selected Common Core standards in mathematics for students in grades K-5
• To present examples of songs and music activities that strengthen mathematics skills of students through singing and participating in classroom music activities.
Categories of Songs

• Songs composed specifically to teach concepts in subject areas
• Sing about Science website: Over 7000 songs, rhymes, jingles, and YouTube references for songs related to science and math. My favorite is the one that references the value of Pi to the tune of “American Pie.”
• http://singaboutscience.org/wp/findandaddsongs/
• Folk songs and traditional children's songs
Common Core State Standards for Mathematics

- Standards are organized on three levels:
 - **Domains**: Broad groups of related standards
 - **Clusters**: Groups of related standards within domains
 - **Standards**: Statements of what students should understand and be able to do within clusters
Common Core State Standards for Mathematics

- **Domains** are common to all grade levels.
 - Counting and Cardinality (Kindergarten only)
 - Operations and Algebraic Thinking
 - Number and Operations in Base Ten
 - Number and Operations—Fractions (Beginning in Gr. 3)
 - Measurement and Data
 - Geometry

- **Clusters** and **Standards** are specific to each grade level.
KINDERGARTEN
Kindergarten

• DOMAIN: COUNTING AND CARDINALITY
(Cardinality is the number of elements in a set.)

• Cluster: Know number names and the count sequence

• Standard 2. Count forward beginning from a given number within the known sequence (instead of having to begin at 1)
Counting forward beginning from a given number

- **Rhyme:** One, Two, Three, Four, Five
- **Activity:** Ss stand in 2 facing lines, several steps apart. Group 1 steps forward on One, Two, Three, Four, Five, stops on Five, and speaks next words with descriptive motions. Group 2 steps forward on Six...Ten, stops on Ten, and speaks next words with descriptive motions. Groups alternate asking questions and responding while performing descriptive actions. Repeat, with Group 2 starting the activity
- After playing the game, T draws attention to how Group 2 does not start counting with “One.”
One, Two, Three, Four, Five

One, two, three, four, five,
Once I caught a fish alive.
Six, sev’n, eight, nine, ten,
But I let it go again.
Why did you let it go?
Because it bit my finger so!
Which finger did it bite?
The little one on the right!
Other Counting Songs and Rhymes

- One, Two, Tie My Shoe
- All Around the Buttercup
- The Angel Band
- One, Two, Three, Four, Five
- This Old Man
- Tideo
- Ten in the Bed
Kindergarten

- **DOMAIN:** COUNTING AND CARDINALITY
- **Cluster:** Count to tell the number of objects.
- **Standard 4.** Understand the relationship between numbers and quantities; connect counting to cardinality.
Understanding the relationship between numbers and quantities

- **Standard 4a.** When counting objects, say the number names in the standard order, pairing each object with one and only one number name and each number name with one and only one object.

- **Song:** The Angel Band

- **Activity:** Use visual aid of pairs of pictures (various styles or colors of angels) and numbers.
Angel Shape
There was one, there were two, there were three little angels,

There were four, there were five, there were six little angels,

There were sev'n, there were eight, there were nine little angels,

Ten little angels in the band.
The Angel Band

There was one, there were two, there were three lit-tle an-gels,
There were four, there were five, there were six lit-tle an-gels,
There were sev’n, there were eight, there were nine lit-tle an-gels,
Ten lit-tle an-gels in the band.
Understanding the relationship between numbers and quantities

• **Standard 4b.** Understand that the last number name said tells the number of objects counted. The number of objects is the same regardless of their arrangement or the order in which they were counted.

• *Song:* Tideo
Understanding the relationship between numbers and quantities. 4b. cont.

• **Activity**: Arrange 3 Ss, each holding a picture of a window, each numbered 1, 2, or 3. A 4th “Passing Student” stands facing Window 1.

• On the first word of the song (Pass), “Passing Student” moves past the first window and continues to pass the 2nd & 3rd windows.

• Stop and rearrange “Windows Ss” to show that no matter what order the Window Ss are in, there are always 3 windows.
Tideo

Origin: United States

\(\text{\textbf{CSP = E}} \)

\(\text{\textbf{j} = 100} \)

Pass one window, ti-de-o, Pass two windows, ti-de-o,

Pass three windows, ti-de-o, Jingle at the window, ti-de-o.

Ti-de-o, ti-de-o, Jingle at the window, ti-de-o.
Tideo

Pass one window, Tideo,
Pass two windows, Tideo,
Pass three windows, Tideo,
Jingle at the windows, Tideo.
Picture for Tideo, Pass one window
Website for Pictures of Windows

- https://www.google.com/search?q=windows+clip+art+pictures&sa=X&hl=en&biw=1400&bih=928&site=webhp&tbm=isch&tbo=u&source=univ&ved=0CD8Q7AlqFQoTCMWkheqp-cYCFUGfgAod4sUAYQ
Kindergarten

- **DOMAIN:** COUNTING AND CARDINALITY
- **Cluster:** Count to tell the number of objects.
- **Standard 5.** Count to answer “how many?” questions about as many as 20 things arranged in a line, a rectangular array, or a circle, or as many as 10 things in a scattered configuration; given a number from 1–20, count out that many objects.
Count to answer “how many?” questions

- **Song:** The Angel Band
- **Activity:** Lay out 12 rhythm instruments in a line. Allow Ss to count out 10 of the 12 instruments. Play instruments, one child playing on a number, while singing “The Angel Band.”
• **DOMAIN:** COUNTING AND CARDINALITY
• **Cluster:** Compare numbers
• **Standard 6.** Identify whether the number of objects in one group is greater than, less than, or equal to the number of objects in another group, e.g., by using matching and counting strategies.
Identify whether the numbers of objects in groups is greater than, less than, or equal

- **Songs**: Hot Cross Buns and All Around the Buttercup
- **Activity**: T prepares a poster: a line with 2 buns; a line with 3 flowers
- Ss sing songs and play games (partner clapping game for Hot Cross Buns; circle game for All Around the B.)
- Ss sing songs and point to buns (One a penny, two a penny) and flowers (One, two, three) while singing.
All Around the Buttercup

Origin: U. S.

CSP: A

\[\text{\textbf{All Around the Buttercup}} \]

\[J = 88 \]

\[\text{Origin: U. S.} \]

\[\text{CSP: A} \]

\[\text{All around the buttercup, One, two, three,} \]

\[\text{If you want a pretty maid, Just choose me.} \]
Std. 6 cont.: Identify whether the numbers of objects in groups is greater than, less than, or equal

• Ss respond to questions, “Do we have the same number of flowers as we have buns?” (Thumbs up for “Yes,” down for “No.”)

• “Which do we have more of, buns or flowers?” Pat your tummy if we have more buns. Pat your head if we have more flowers.

• Ss sing songs again and demonstrate the numbers by holding up appropriate number of fingers.
Flower for All Around the Buttercup
Kindergarten

• **DOMAIN:** OPERATIONS AND ALGEBRAIC THINKING

• **Cluster:** Understand addition as putting together and adding to, and understand subtraction as taking apart and taking from.

• **Standard 1.** Represent addition and subtraction with objects, fingers, mental images, drawings, sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations.
Representing addition and subtraction

- **Song:** Johnny Works with One Hammer
- **Activity:** Perform game. Teacher draws attention to how students are acting out adding hammers (hands, feet, and head) on each repetition of the song.
- (Do not specify right or left hand or foot.)

Johnny works with one hammer, one hammer, one hammer,
Johnny works with one hammer, then he works with two.
Johnny Works with One Hammer

Origin: American Folk Song

CSP: F

Johnny works with one hammer, one hammer, one hammer.

Johnny works with one hammer, then he works with two.
Representing addition and subtraction, cont.

• **Song:** (Addition) The Angel Band

• **Activity:** Use pictures of angels to demonstrate adding one more picture to increase the number of angels.

• **Song:** (Addition) Bingo

• **Activity:** For each repetition, count the number of claps on the B-I-N-G-O part when children sing the letters silently.
Representing addition and subtraction, cont.

• **Song:** (Subtraction) Ten in the Bed.

• **Activity:** Use pictures of children in a bed, removing one for each verse, to demonstrate subtraction.

• **Song:** (Subtraction) Alice the Camel.

• **Activity:** Students draw pictures of camels with 5 and fewer humps. Teacher may prepare a template with 5 camels and one horse. Ss draw appropriate number of humps on each camel.
Bed for Ten in the Bed
Website for Pictures of Kids

- https://www.google.com/search?q=coloring+pages+pictures+of+kids&biw=1400&bih=928&tbm=isch&tbo=u&source=univ&sa=X&ved=0CB0QsARqFQoTCM2b7Pql-cYCFUEigAodoasK3A

- Enlarge bed and make 10 pictures of kids
Kindergarten

• **DOMAIN: OPERATIONS AND ALGEBRAIC THINKING**

• **Cluster:** Understand addition as putting together and adding to, and understand subtraction as taking apart and taking from.

• **Standard 3.** Decompose numbers less than or equal to 10 into pairs in more than one way, e.g., by using objects or drawings, and record each decomposition by a drawing or equation (e.g., $5 = 2 + 3$ and $5 = 4 + 1$).
Decompose Numbers

• Song: Skip to the Barbershop
• Activity: Ss sing song then demonstrate the equation using pictures or manipulatives: 3 sticks of candy, one for you, one for me, one for Sister Sally (3 = 1 + 1 + 1)
Skip to the Barber Shop

Skip, skip to the barber shop,
I left my hat at the barber shop and three sticks of candy.
One for you, one for me,
and one for sister Sally.
Kindergarten

• DOMAIN: MEASUREMENT AND DATA
• Cluster Describe and compare measurable attributes.
• Standard 2. Directly compare two objects with a measurable attribute in common, to see which object has “more of”/“less of” the attribute, and describe the difference. For example, directly compare the heights of two children and describe one child as taller/shorter.
Directly comparing two objects

• **Musical example:** Several 4-beat rhythm patterns from familiar songs: | | | | ;
 | |_| | | ; |_| | |_| | etc.

• **Activity:** Ss echo clap several patterns, one at a time. Then Ss listen to 2 different patterns which the T claps and determine which has more sounds (not more beats).
Directly comparing two objects

• **Musical example:** 2 familiar songs of different lengths, Bounce High and Lucy Locket, e. g.

• **Activity:** Ss sing songs and play games. Ss sing once more to determine which song is shorter.
Kindergarten

• DOMAIN: GEOMETRY

• Cluster: Analyze, compare, create, and compose shapes.

• Standard 5. Model shapes in the world by building shapes from components (e.g., sticks and clay balls) and drawing shapes.
Model shapes in the world

• Musical example: Ss walk in an open space to the beat of a drum.

• Activity: Modeling a circle. Ss form circle and walk to T’s drum beat. “Play the drum with your feet.”

• Activity: Modeling a rectangle. Ss singly walk 4 beats in one direction; then at T’s signal make a 90-degree turn and walk 4 beats in that direction; repeat 2 more times to walk a rectangle.
Grade 1
Grade 1

- **DOMAIN: MEASUREMENT AND DATA**
- **Cluster:** Measure lengths indirectly and by iterating length units.
- **Standard 2.** Express the length of an object as a whole number of length units, by laying multiple copies of a shorter object (the length unit) end to end; understand that the length measurement of an object is the number of same-size length units that span it with no gaps or overlaps. Limit to contexts where the object being measured is spanned by a whole number of length units with no gaps or overlaps.
Measure lengths by iterating length units

- **Musical Example:** 4-beat patterns from familiar songs. “Bounce High” works well.
- **Activity:** Preparation: Collect paint chip cards from home improvement stores. Cut cards into their color strips, and then cut some strips into 2 equal pieces. Use the whole strips for quarter notes (one sound to the beat), and the half strips for eighth notes (two sounds to the beat). Using a 9X12 piece of construction paper, draw 4 lines of 4 rectangles the same size as the whole strips of paint chips. Laminate. Make enough for all children in a class.
Measure lengths by iterating length units

• Ss have learned steady beat. This activity will illustrate one sound to the beat and 2 sounds to the beat, and that the sounds are longer and shorter.

• After singing a song, Ss sing one pattern (Bounce high, bounce low [| | | |]) and clap its rhythm. Ss lay one strip on each rectangle on one line of the poster to represent the quarter notes. For In the air and on the ground (|_| |_| |), lay 2 shorter pieces on each of first 2 rectangles and 2 full strips on last 2.
Grade 1

• DOMAIN: MEASUREMENT AND DATA
• Cluster: Tell and write time.
• Standard 3. Tell and write time in hours and half-hours using analog and digital clocks.
• Song: Cobbler, Cobbler (Hunt the Slipper)
• Activity: Play game, and then discover the meaning of “half past” by observing an analog clock face.
Cobbler, Cobbler (Hunt the Slipper)

Origin: Jamaican

\[\text{CSP: A} \]

\[\text{\(\text{\textit{Cobbler, Cobbler, mend my shoe. Let it done by half past two}}, \quad \text{\(\text{\textit{Half past two is at the door, Let it done by half past four.}} \text{\}} \]

\[\text{\(\text{\textit{}} \text{\}} \]

\[\text{\(\text{\textit{}} \text{\}} \]
Clock for Cobbler, Cobbler

Attach hands with a brad. Move hands to “half-past two” and “half-past four.”
Website for Clock Pictures

- (Owl) https://www.google.com/search?q=simple+shapes+clock&biw=1400&bih=928&tbm=isch&tbo=u&source=univ&sa=X&ved=0CFEQ7AlqFQoTCPrknMCt-cYCFUeggAodllYNZQ#imgrc=0ibXWw51B6oNoM%3A

- (Attach hands) https://www.google.com/search?q=simple+shapes+clock&biw=1400&bih=928&tbm=isch&tbo=u&source=univ&sa=X&ved=0CFEQ7AlqFQoTCPrknMCt-cYCFUeggAodllYNZQ#imgdii=0ibXWw51B6oNoM%3A%3B0ibXWw51B6oNoM%3A%3BNTwdUPrT0EED_M%3A&imgrc=0ibXWw51B6oNoM%3A
Grade 1

- **DOMAIN:** GEOMETRY
- **Cluster:** Reason with shapes and their attributes
- **Standard 1:** Distinguish between defining attributes (e.g., triangles are closed and three-sided) versus non-defining attributes (e.g., color, orientation, overall size); build and draw shapes to possess defining attributes.
Reasoning with shapes

• **Musical Example:** The location of the notehead on the staff (the defining attribute) determines its tone name or pitch. Having a colored-in or empty note head; having a stem, flag, or beam; and having the stem turned up or down (non-defining attributes) do not affect the tone name or pitch.

• **Activity:** 1. Read familiar songs at several pitch levels, with stems turned up or down. 2. Read familiar songs with repeated pitches (Hey, Ho, Round We Go, Sometimes turning all around; my version of Wall Flowers, Turn your back to the wall again)
Hey, Ho, Round We Go

Origin: Aden G. Lewis

CSP = A

\[\text{\textbf{Hey, ho, round we go, Round we go together}} \]

3

\[\text{\textbf{Sometimes up, sometimes down,}} \]

4

\[\text{\textbf{Sometimes turning all around.}} \]

5

\[\text{\textbf{Tell us, please, you know how,}} \]

6

\[\text{\textbf{Guess what we are doing now!}} \]
Grade 1

• DOMAIN: GEOMETRY
• Cluster: Reason with shapes and their attributes
• Standard 3. Partition circles and rectangles into two and four equal shares, describe the shares using the words halves, fourths, and quarters, and use the phrases half of, fourth of, and quarter of. Describe the whole as two of, or four of the shares. Understand for these examples that decomposing into more equal shares creates smaller shares.
Reasoning with shapes

• *Musical Example.* PLEASE NOTE: Do not use a pie chart of note values in first grade!!
• It is very tempting to accomplish Standard 3 with a pie chart, but please don’t.
Grade 2
Grade 2

• DOMAIN: MEASUREMENT AND DATA
• Cluster: Represent and interpret data.
• Standard 10. Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems using information presented in a bar graph.
Draw graphs

- **Musical Example:** Five-line staff and familiar songs
- **PLEASE NOTE:** Standard musical notation, with the five-line staff and notes placed on the lines and spaces, is certainly a graph demonstrating pitch levels and durations.
- **Activity:** Ss place symbols, word cards, or standard notes on a five-line staff, graphing the contour of a melody.
Grade 3
Grade 3

• **DOMAIN:** OPERATIONS AND ALGEBRAIC THINKING

• Cluster: Represent and solve problems involving multiplication and division.

• **Standard 1.** Interpret products of whole numbers, e.g., interpret 5 X 7 as the total number of objects in 5 groups of 7 objects each. For example, describe a context in which a total number of objects can be expressed as 5 X 7.
Interpret products of whole numbers

• *Song:* Weevily Wheat

• *Activity:* Play game. Explain the multiplication facts used in the song in the context of the song. E.g., five baskets each holding five pounds of wheat equal 25 pounds of wheat; six baskets of five pounds of barley equal 30 pounds of barley.
Weevily Wheat

Origin: U. S., Texas

Don't want your wee-vil-ly wheat, Don't want your bar-ley,

Take some flour and half an hour and bake a cake for Char- lie.

Five times five is twen-ty-five, Five times six is thirty,

Five times sev'n is thirty-five, Five times eight is forty.
Grade 3

• DOMAIN: OPERATIONS AND ALGEBRAIC THINKING

• Cluster: Represent and solve problems involving multiplication and division.

• **Standard 2.** Interpret whole-number quotients of whole numbers, e.g., interpret 56 / 8 as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each. For example, describe a context in which a number of shares or a number of groups can be expressed as 56 / 8.
Interpret whole-number quotients of whole numbers

• PLEASE NOTE: The two activities below are suitable for lower grades when the teacher introduces meter. I have placed them in the Grade 3 section because the teacher may introduce the mathematical connection at this time.
Interpret whole-number quotients of whole numbers

- *Musical Example: Meter.* Ss divide beats into metric groupings. Ss understand that beats in music most commonly fall into equal-numbered groups, with the first beat of each group being stronger than the others. Music moves in twos and threes (Strong-weak, Strong-weak, or Strong-weak-weak, Strong-weak-weak), or some combination of twos and/or threes. For example, a meter of four is two groups of two beats.
Interpret whole-number quotients of whole numbers

- **Song:** Deedle, Deedle, Dumpling
- **Activity:** Ss remove one shoe and step beat while chanting the nursery rhyme. Start stepping with the shoe foot. Ss notice that the beats they step with the shoe foot are stronger than those with the sock foot. Ss notice that there is a pattern of Strong-weak, Strong-weak as they perform the beat.
Deedle, Deedle, Dumpling

Deedle, Deedle, Dumpling, my son John,
Went to bed with his stockings on.
One shoe off and one shoe on,
Deedle, Deedle, Dumpling, my son John.
Interpret whole-number quotients of whole numbers

• **Song:** Jack Be Nimble

• **Activity:** Ss may jump over rhythm sticks laid out on the floor to demonstrate the beginning of each measure. Transfer the rhythm sticks to bar lines on a five-line staff.

• (Jump on the words “Jack” and “can” of candlestick.)
Jack Be Nimble

Jack be nimble,
Jack be quick
Jack jump over the candlestick.
• **DOMAIN:** NUMBER AND OPERATIONS—FRACTIONS

• **Cluster:** Develop understanding of fractions as numbers.

• **Standard 3.** Explain equivalence of fractions in special cases, and compare fractions by reasoning about their size.
Explain equivalence of fractions

- **Standard 3b.** Recognize and generate simple equivalent fractions, e.g., $1/2 = 2/4$, $4/6 = 2/3$. Explain why the fractions are equivalent, e.g., by using a visual fraction model.

- **Musical Example:** Note values as fractions of a whole note. (NOW you can use a pie chart!)

- **Activity:** Students draw a note tree or note circle chart with whole note in the middle. Explain how 2 half notes equal the whole note, or 4 quarter notes equal a whole note.
Grade 3

- **DOMAIN: GEOMETRY**

- **Cluster: Reason with shapes and their attributes.**

- **Standard 2.** Partition shapes into parts with equal areas. Express the area of each part as a unit fraction of the whole. For example, partition a shape into 4 parts with equal area, and describe the area of each part as 1/4 of the area of the shape.
Partition shapes into parts with equal areas

- **Musical Example:** Note values as fractions of a whole note
- **Activity:** Students draw a note circle chart with whole note in the middle. Explain how 2 half notes equal the whole note, or 4 quarter notes equal a whole note.
Grade 4
Piggyback Songs

• PLEASE NOTE: Students may create piggyback songs (songs with academic information set to the melodies of familiar songs) for many of the standards at the fourth and fifth grade levels. See examples below.
Grade 4

• DOMAIN: MEASUREMENT AND DATA

• Cluster: Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit.

• Standard 1. Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit.
Know relative sizes of measurement units, cont.

• (Standard 1 cont.) Record measurement equivalents in a two-column table. For example, know that 1 ft is 12 times as long as 1 in. Express the length of a 4 ft snake as 48 in. Generate a conversion table for feet and inches listing the number pairs (1, 12), (2, 24), (3, 36), ...
Know relative sizes of measurement units, cont.

• *Musical Example:* Student-created piggyback songs

• *Activity:* Students create piggyback songs for the unit groupings of km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec.
Piggyback Song for Time Values

• To the tune of “Old MacDonald”

Hours, minutes, and seconds,
We can tell the time. :| |

With a tick-tock here, and a tick-tock there,
Here a tick, there a tock, everywhere a tick-tock,
Hours, minutes, and seconds,
We can tell the time. (cont.)
Piggyback Song for Time Values, cont.

Sixty minutes in an hour,
We can tell the time. :| |
With a tick-tock here, and a tick-tock there...

Sixty seconds in a minute,
We can tell the time. :| |
With a tick-tock here, and a tick-tock there...
Grade 5

• **DOMAIN: NUMBER AND OPERATIONS—FRACTIONS**

• Cluster: Use equivalent fractions as a strategy to add and subtract fractions.

• **Standard 1.** Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. For example, \(2/3 + 5/4 = 8/12 + 15/12 = 23/12\). (In general, \(a/b + c/d = (ad + bc)/bd\).)
Add and subtract fractions with unlike denominators

• Musical Example: Add note values within a measure or a phrase in a familiar song.

• Activity: Write equations for addition of note values.

• E. g., \(\frac{1}{2} + \frac{1}{4} + \frac{1}{4} = 1 \) (1 whole note or a 4-beat measure)

• Also, \(\frac{2}{4} + \frac{1}{4} + \frac{1}{4} = \frac{4}{4} = 1 \)
Grade 5

• **DOMAIN: MEASUREMENT AND DATA**

• **Cluster: Geometric measurement:** understand concepts of volume and relate volume to multiplication and to addition.

• **Standard 5.** Relate volume to the operations of multiplication and addition and solve real world and mathematical problems involving volume.
Relate volume to the operations of multiplication and addition

- Standard 5b. Apply the formulas $V = l \times w \times h$ and $V = b \times h$ for rectangular prisms to find volumes of right rectangular prisms with whole-number edge lengths in the context of solving real world and mathematical problems.
Relate volume to the operations of multiplication and addition

• *Musical Example:* Student-created piggyback songs.

• *Activity:* Students create piggyback songs for the formulas for finding the volumes of prisms.

• *To the tune of “I’m a Little Teapot”:*

 The volume of a prism can be found
 Using a formula that’s very sound.
 Volume equals length times width times height,
 That’s the formula that gets it right.
Additional Piggyback Song

• The Quadratic Equation
• To the tune of “Pop Goes the Weasel”

X is equal to negative b,
Plus or minus the square root
Of b squared minus 4ac,
All over 2a.
My Hands upon My Head

Origin: Lucille F. Wood

My hands upon my head I place, Upon my shoulders, on my face.

At my waist and by my side, And then behind me they will hide.

And I will raise them way up high, And let my fingers fly, fly, fly.

Then clap, clap, clap and one, two, three, Just see how quiet they can be.
Websites

• http://www.corestandards.org/Math/ Common Core Mathematics Standards
• http://www.kididdles.com
• http://www.songsforteaching.com
 – Scroll to the bottom
 – Find "Educational References and Teaching Tips"
• http://www.sitesforteachers.com/index.html
• Learning A-Z (includes Reading A-Z)
 – http://www.learninga-z.com/
 – http://www.readinga-z.com/samples/preview.html
• The Best on the Web for Teachers